Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Electron. j. biotechnol ; 10(4): 536-548, oct. 2007. graf, tab
Article in English | LILACS | ID: lil-504121

ABSTRACT

The mobilization of heavy metals in the environment due to industrial activities is of serious concern due to the toxicity of these metals in humans and other forms of life. The equilibrium adsorption isotherms of Cd(II), Pb(II) and Zn(II) ions, detoxification from waste water using unmodified and EDTA-modified maize husk have been studied. Maize husk was found to be an excellent adsorbent for the removal of these metal ions. The amount of these metal ions adsorbed increased as the initial concentration increased. Also, EDTA-modification enhanced the adsorption capacity of maize husk due to the chelating ability of ethylenediamine tetra acetic acid (EDTA). Among the three adsorption isotherms tested, Dubinin-Radushkevich isotherm gave the best fit with R² value ranging from 0.7646 to 0.9988 and an average value of 0.9321. This is followed by Freundlich and then Langmiur isotherms. The sorption process was found to be mostly a physiosorption process as seen from the apparent energy of adsorption which ranged from 1.03 KJ/mol to 12.91 KJ/mol. Therefore, this study demonstrates that maize husk which is an environmental pollutant could be used to adsorb heavy metals and achieve environmental cleanliness.


Subject(s)
Water Pollutants, Chemical/isolation & purification , Industrial Water , Metals, Heavy/isolation & purification , Water Purification/methods , Zea mays , Absorption , Cadmium/isolation & purification , Wastewater Disposal/methods , Lead/isolation & purification , Thermodynamics , Zinc/isolation & purification
2.
Electron. j. biotechnol ; 7(1): 38-46, Apr. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-363994

ABSTRACT

The mycelium of Fusarium flocciferum was assayed for its ability to degrade aromatic compounds, namely, gallic, protocatechuic, vanillic, syringic, caffeic, and ferulic acids and syringic aldehyde, commonly found in agro-industrial wastes. The biodegradation assays were performed in liquid medium with the phenolic compounds as single substrates and as a synthetic mixture containing the seven aromatic compounds. The results with single substrates indicated that in 24 hrs of incubation the fungus was able to reduce the phenolic concentration from 200 mg/l to below detection limits, except for syringic acid, being the lowest degradation rates found for this acid and its aldehyde. The biodegradation experiments with the mixture of phenolic compounds showed that after 8 hrs the total phenolic concentration was reduce from 350 mg/l to below the detection limits of all the tested compounds. In all the experiments a rise in the pH and an effective detoxification of the phenolic solutions were also observed.


Subject(s)
Biodegradation, Environmental , Phenols/metabolism , Fusarium/metabolism , Agribusiness , Wastewater Disposal/methods , Hydrogen-Ion Concentration , Fungi/metabolism , Industrial Waste
SELECTION OF CITATIONS
SEARCH DETAIL